- almost everywhere finite
- Математика: почти всюду конечный
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Almost surely — In probability theory, one says that an event happens almost surely (a.s.) if it happens with probability one. The concept is analogous to the concept of almost everywhere in measure theory. It is often encountered in questions that involve… … Wikipedia
Almost — In mathematics, especially in set theory, when dealing with sets of infinite size, the term almost or nearly is used to mean all the elements except for finitely many . In other words, an infinite set S that is a subset of another infinite set L … Wikipedia
Hölder's inequality — In mathematical analysis Hölder s inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. Let (S, Σ, μ) be a measure space and let 1 ≤ p, q ≤ ∞ with… … Wikipedia
Radon–Nikodym theorem — In mathematics, the Radon–Nikodym theorem is a result in functional analysis that states that, given a measurable space ( X , Sigma;), if a sigma finite measure nu; on ( X , Sigma;) is absolutely continuous with respect to a sigma finite measure… … Wikipedia
Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… … Wikipedia
Absolute continuity — In mathematics, the relationship between the two central operations of calculus, differentiation and integration, stated by fundamental theorem of calculus in the framework of Riemann integration, is generalized in several directions, using… … Wikipedia
metalogic — /met euh loj ik/, n. the logical analysis of the fundamental concepts of logic. [1835 45; META + LOGIC] * * * Study of the syntax and the semantics of formal languages and formal systems. It is related to, but does not include, the formal… … Universalium
Ergodic theory — is a branch of mathematics that studies dynamical systems with an invariant measure and related problems. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical … Wikipedia
Convergence in measure — can refer to two distinct mathematical concepts which both generalize the concept of convergence in probability. Contents 1 Definitions 2 Properties 3 Counterexamples 4 Topology … Wikipedia
Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… … Wikipedia
Bounded variation — In mathematical analysis, a function of bounded variation refers to a real valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a… … Wikipedia